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ABSTRACT

The determination of the boundary conditions for a component-level analysis,
applying discrete finite element and finite difference modeling techniques often requires
an analysis of complex coupled phenomenon that cannot be described algebraically. For
example, an analysis of the temperature field of a coldplate surface with an integral fluid
loop requires a solution to the parabolic heat equation and also requires the boundary
conditions that describe the local fluid temperature. However, the local fluid temperature
is described by a convection equation that can only be solved with the knowledge of the
locally-coupled coldplate temperatures. Generally speaking, it Is not computationally
efficlent, and sometimes, not even possible to perform a direct, coupled phenomenon
analysis of the component-level and boundary condition models within a single analysis
code. An alternative is to perform a disjoint analysis, but transmit the necessary
information between models during the simulation to provide an indirect coupling. For this
approach to be effective, the component-level model retains full detail while the boundary
condition model is simplified to provide a fast, first-order prediction of the phenomenon
in question. Specifically for the present study, the coldplate structure is analyzed with a
discrete, numerical model (SINDA) while the fiuid loop convection equation is analyzed
with a discrete, analytical model (direct matrix solution). This indirect coupling allows a
satisfactory prediction of the boundary condition, while not subjugating the overall
computational efficiency of the component-level analysis. In the present study a
discussion of the complete analysis of the derivation and direct matrix solution algorithm
of the convection equation is presented. Discretization is analyzed and discussed to
extend of solution accuracy, stability and computation speed. Case studies considering
a puised and harmonic inlet disturbance to the fiuid loop are analyzed to assist in the
discussion of numerical dissipation and accuracy. In addition, the issues of code melding

. or integration with standard class solvers such as SINDA are discussed to advise the user
of the potential problems to be encountered.

NOMENCLATURE
C = Courant Number (U At / Ax)
C, = specific heat (W s /kg °C)
e = total specific energy (W s /kg)
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Superscripts and Subscripts

space increment
time increment

INTRODUCTION

E. = global error

G = thermal conductance (W/°C)

h = enthalpy (W s /kg)

h’ = effective heat transfer coefficient (W/ m?

H = enthalpy flux (W)

k = thermal conductivity (W/ m °C)

L = total tube length (m)

mh = mass flowrate (kg/s)

P = pressure (N/ m?

Q = heat load W)

t = time (s)

T = temperature (°C)

T = temperature, actual equation solved (°C)

u = specific internal energy (Ws/kg)

U = flow velocity (m/s)

X = space (m)
Greek

o = thermal diffusivity (k / p C,) (m?/s)

o = effective thermal diffusivity flux (s

A = denotes difference

p = density (kg / m®)

T = fluid transit time (s) ... _
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The process of convection (or advection) involves the transport of a scalar property
within the confines of a motive flow, traveling a finite velocity. If the convected quantity
represents the fluid enthalpy (or temperature as will be shown), then energy is transported
by the convection of the fluid at a particular enthalpy and flow velocity. In this case, a
disturbance in the inlet temperature (enthalpy) would be convected along the length of
a conduit in space and time. By constructing a differential control volume and performing
a transient energy balancs, the first-order wave or convection equation can be derived
by balancing heat addition with transient heating and convection enthalpy. Figure 1
shows the control volume with an inlet and outlet enthalpy flux (H) and differential heating
(dQ) from a target sink surface (coldplate). The transient energy balance can be written
according to:
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Figure 1. Convection Model

3
= [o2 M+ Heo - H,

0Q = dQ; + dQ,

(1)

Terms e, H, dQ are the total specific energy, enthalpy flux and total heat conduction
respectively. The total specific energy is the sum of the internal, kinetic and potential
energies while the enthalpy flux is a product of the local mass flowrate and local flow
enthalpy. Terms dQ, and dQ, are transverse and axial heat conduction terms,
respectively. The transverse heat conduction term represents the conduction into the
control volume from the local coldplate, while the axial heat conduction term represents
the net heat conduction into the control volume from the upstream and downstream fluid
layers. Generally, the axial heat conduction term is assumed to be small in comparison
to the convection process and for the present study, axial conduction is neglected’. The

above terms can be expanded according to:

' By normalizing the equations, assuming the convection term is of the same magnitude as the
capacitance term, it can be shown that the axial conduction term will be negligible provided that:

<
LpCc L2
For the present study this ratio is approximately 0.1.

<k L1 R
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At th|s point it is appropnate to make several sumphfylng assumptions. First, we
can generally neglect changes in kinetic and potential energy. Next, if we assume an
incompressible fluid, then the pressure dependence can be eliminated and we can
formulate a simple state equation to relate enthalpy to temperature. With this, Eqns. 1
and 2 can be combined to yield:

8T, 9T .
rU e T),
at @)

U=
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Equation 3 is the first-order convection equation that describes the local fluid
temperature (T) as a function of both time and one-dimensional space along the length

of the conduit. Parameters U and o are the fluid flow velocity and effective thermal
diffusivity flux, respectively, and is a compact notation to describing the relevant features
of the convection process (geometry, flow velocity and coldplate coupling, thermal-
physical properties). The effective thermal diffusivity flux is written:

h* D, L (4)
1IhC

Thts parameter descnbes the retatlve strength of the thermal couphng between the tube
and the local sink surface. For Example, when t — 0, the energy transport is dominated
by local conduction to the sink; when h" — 0, the energy transport is dominated by fluid
convection.

In its appearance, Eqn. 3 is linear, in-homogeneous? with constant coefficients and
should yield to an analytical solution.? However, as addressed in the abstract, the present

? The equatlon is ln-homogeneous because of the presence of the source term, T, wh:ch varies in
time and spacs.

¥ An inhomogeneous ordinary differential equation can be described along a characteristic line (¥ =

x - Ut) and solved specifically for those regions where either the initial conditions or the boundary
conditions effect the solution.
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study deals with the feature of a coupled boundary condition. The source term in Eqn
3 is determined from the coupled boundary condition of the local coldplate temperature.*
Thus the source term cannot be decoupled from the dependent variable - at least not
analytically. This interdependence between boundary conditions is the impetus for the
present study - to develop a suitable means to coordinating a solution of Eqn. 3 with the
boundary conditions (coldplate temperatures) put forth from a discrete finite difference
model.

ANALYSIS

If, because of the coldplate coupling, that analytical solutions to Egn. 3 are
intractable, we must resort to a numerical solution, preferably a finite difference technique.
Consider then a discrete numerical approach. Equation 3 appears innocuous. The partial
derivatives are first order, not mixed and the equation is linear. It would be desirable to
develop an explicit discrete equation, or discretization, that wouid not require iteration at
each time step - this in order to generate a rapid disjoint solution discussed in the
abstract. To satisfy this, we could use forward differencing in time and central
differencing in space:

or T -7/
at At

5
ar 74{1 ‘7'111
ax 2Ax

Superscripts (j) indicate time and subscripts (i) indicate space. Substituting Egns. 5 into

Eqn. 3, and assuming for the sake of convenience that the fluid loop is thermally

?kecoupled from the coldplate (@ = 0), we can write the discrete difference equation
emel):

- e Smh - Th
vat ®
©"ax

This kemel is referred to as the Euler forward, centered difference (EFCD).
Equation 6 is explicit such that we solve for the future time (j+1) temperatures based on
old (j) values, so the numerical solution would consist of a simple marching scheme.
Without the need for iteration, the EFCD kernel is computationally efficient. However, this
is not a sufficient criteria to select this kernel - above all, the scheme must also be
numerically stable. We can evaluate stability in a macroscopic manner by computing the

¢ The coldplate temperature is given from the solution of the parabolic heat equation with the

boundary conditions determined from the local fluid temperature
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actual equation solved by the discrete representation of Eqn. 6. We do this by letting the
discrete values interpolate the continuous values of an effective temperature ( ), where

T! — T(t, x). If we expand, in a Taylor series, those discrete values away from i,j, then
the actual equation solved is simply the original convection equation with a remainder
term: :

af , ,af _ _utat 2T,
5 ] x" T2 Order(A t?,Ax?) @

The remainder term is composed of a second partial of T with respect to x (and
other higher order mixed partials). This term is exactly representative of axial diffusion
or conduction, but it is numerically generated and not physical. It is true that the
magnitude of the axial conduction is small for a small value of At, but the fact that the

leading coefficient is negative results in a solution that will always grow without bound
after a finite number of recursive solutions of Eqn. 6. Thus, the Euler forward, centered
difference kernel (Eqgn. 6) is unstable and should not be used.

While the use of Taylor series to determine the actual equation solved is a suitable
approach to eliminate those kernels that create deleterious artificial phenomenon, there
are more sophisticated approaches to determining the subtleties of numerical stability of
a differencing kernels (Strauss, 1992). These techniques are used to analyze some 12
difference kemels applied to the one-dimensional convection equation in Anderson et al.
(1984); some general conciusions from the Anderson et al. study are:

o all differencing kernel possess inaccuracy as a result of truncation error
o truncation error creates numerical dissipation and dispersion phenomenon®
Crank-Nicolson Kernel

Selection of a kemel requires a careful trade of the computational requirements
(explicit versus implicit solutions) and the effacts of the spurious numerical phenomenon
weighed against the assumptions applied to the system at hand®. In the present study,
we desire a kernel that will produce a negligible dissipation and will require a minimum
of computation. The former criteria tends to associate with implicit, centered point
kernels, while the latter criteria, with non-iterative explicit kernels.

The Crank-Nicolson centered-difference (CNCD) kemel is implicit, can be

# Dissipation results from even order partial derivative terms and has the effect of introducing a spurious
axial conduction. Dispersion results from odd order partial derivative terms and has the effect of changing
the phase relationships between waves. The combination of dissipation and dispersion is terms diffusion
(Anderson et al., 1984),

¢ To elaborate, one shouid weigh the assumptions made in the analysis with the noted effects created
by the kernel. For example, if the convection equation is derived by neglecting an axial conduction term,
then a comparable amount of spurious dissipation would be considered acceptable. However, it is difficult
to determining the magnitude of the injected numerical dissipation.
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described in a matrix form suitable for a direct matrix inversion and possess second order
accuracy in time and space. The kernel is formed analogous to the EFCD kernel above,
but includes a present-time space difference for stability:

or T -7/
at At
®)
T -Th | T -Th
or . 2Ax 2Ax
ax 2

The actual equation solved by the CNCD kernel creates numerical dispersion, (a
remaining odd-ordered partial derivative term), but is unconditionally stable for any time
step.

At this point, we have discussed the development of the kemnel with a constant
space incremental (Ax). We can generalize the CNCD kernel to apply a variable spatial
step size’. We begin by creating a differencing scheme to approximate the space
derivative with varying step size according to:

%“afl-l'-"bfl"'cﬂd ' )

7 This is necessary in order to simulation fluid networks that have variable sized nodes - a feature
in the present study.
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The leading coefficients, a, b, ¢ are determined by applying a Taylor series
expansion to approximate the function away for the discrete local i values®:

-1

T

YT ) (1)

By combining Eqns. 9, 10 with Eqn. 3, the extended CNCD kernel can be W"???"E

Aﬂ_?*871"+C71."'-DT,{1+E7-[I*FT[£1+a.T..I

A=-8Y
-l"-bu-#.a_-
At 2 2
c.tU ()
D= -A
=t _bU_ &
o At 2 2
F=-C

Equation 11 describes a system of discrete equations for each node (i = 1 to N).
In order to apply the kernel over the discrete domain from i = 1 to N we need to perform
a conditioning of the first and last equations. At the first node (i= 1), a boundary value
of Ty, is required. This value is the specified inlet fluid temperature to the fiuid loop (as
a function of time). At the last node, the kemel requires a value of Ty.ss Dut this value
does not exist. This is circumvented by simply adjusting the local values of the derivative

* The details of this are excluded, but can be found in most treatise on numerical analysis
techniques. Briefly, the method involves substituting the Taylor series expansions for each discrete
value and observing the coefficients of each derivative terms. Three independent equations are

created to solve for a, b, c.
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coefficients, a, b, ¢ to apply a backwards-differencing in space at this last node®:

for =N
.
. (12)
b=
Ax,
=0
We can now generate a tri-diagonal matrix equation according to:
, e Ry [eTa 0" AT
5¢ T, EF T «'T.,
ABC DEF
T, T «'T,
ABC s DEF 3 =3
[ ] [ ] L J ¢ * [ 2 L] ¢ * (13)
L4 L] [ ] * L ] L} ® ¢ *
A 8 cl|™ DEFA|™* LRAT
A8l|™ | £ A|™ & Tt
TNJ I TNJ E‘T-.”

In compressed form, Eqn. 13 can be simplified and we can solve for the future time (+1)
values of temperature by multiplying both sides by the inverse of the leading matrix:

[MITF" = (MITY + [7)
[TF! = IMINLTY « (T

(14)

At this stage, Eqn. 14 is usually solved numerically, typically with a Gauss-Siedel or an
over-relaxation method. Under the best of conditions, either of these methods converge
to a solution with a finite number of iterations with sucessive substitutions of pervious
solutions. This process can be computationally expensive especially if the boundary
conditions need to be updated frequently. Altematively, because matrix M is sparse,
squars, tri-diagonal, we can apply a direct solution technique to determine M. A well-
established approach to finding the solution of Eqn. 14 Is to use LU decomposition.
Briefly, this technique involves creating lower and upper diagonal matrices that are
manipulated to yield a direct solution with minimal storage requirements. Development

® Because the backwards difference is only first order accurate in space at the last node, the overall
order of the entire solution is somewhat less than second order - unfortunate indeed but unavoidable.
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of this method is quite standard and is excluded for the sake of brevity. The interested
reader is referred to Gerald and Wheatly (1984).
The necessary conditions for the LU decomposition is that M must be diagonally

dominant. This in effect, does pose a limit on the selection of time step At for a given Ax
because these parameters describe the respectlve diagonals of M. Diagonal dominance

will be observed if:
At 2 2 2 2|
In the special case of b = 0 (uniform node size) and o' = 0 (coldplate decoupled),
Egn. 15 can be more appropriately expressed as a function of the Courant number (C):

c-AtU

(16)

L)

This restriction is mitigated by the fact that diagonally dominance will be enhance by
coldplate plate coupling. Therefore, Eqn. 16 should be considered a rough criteria in
selecting the time step. Regardless, the user should be aware that accuracy decreases
with increasing time step, and so in general, C should be made as small as possible.

CASE STUDIES

In th:s sectxon the dxrect solutnon to Eqn 14 is presented in both tnme and space
for the cases of the inlet fluid temperature described by: a pulse function; a harmonic
function. The pulse function will be used to demonstrate the features of spurious
dispersion. The harmonic function, for which an exact solution exists, is used to
determine the global error and method order. In both cases, the fluid is decoupled from
the baseplate in which case we are solving the homogeneous convection equation. The
space domain is divided into 100 equal sized nodes with C = 1.

Pulse Iinlet Temperature

A pulse boundary condition is analogous to a sudden burst change in inlet fluid
temperature for a finite length of time, then reverting back to the original pre-disturbance
value. The pulse or square wave, in the absence of any dissipation, should retain its
original shape and form along the characteristics. That is, the temperature disturbance
should be convected at the velocity U and should retain the stepped nature of the original
disturbance along lines where x - Ut is a constant. In this test, the magnitude and time
duration of the pulse are both unity. Figure 2 presents a three dimensional plot of
temperature versus time and space. The general trends indicate that the pulse does not
dissipate forward into the flow as indicated by the sharp ridge that defines the leading
characteristic. However, in regions behind or downstream of the pulse, the surface is
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Figure 2. Pulsed Disturbance

wavy which means that there are residual effects of the disturbance that has since left
the region. This is the result of dispersion, and is exacerbated by the fact that we have
used a discontinuous step function for the disturbance.

Harmonic Inlet Temperature

A hamonic disturbance is useful to study from the standpoint of determining the
global error and the overall method order. In this case we define the inlet temperature
as7, = sin(2 = t) ; the exact solution is given:

T, %) = sin2 ={t - TXJ» | (17)

Figure 3 presents the time-space plot of temperature. We immediately see that
dispersion of the waves Is diminished in comparison to the pulse disturbance.

The global error (E,) of a method is the maximum absolute difference between the
numerical and exact solutions. We can compute E., for several values of Courant number
to establish the dependence between discretization on accuracy. In general, the global
error increases with Courant number as depicted in Figure 4. We can determine an
approximate method order if we assume that the global error is a function of the time and

247



Figure 3. Harmonic Disturbance

space increments according to:
E, - aAtP+b AxC (18)
For a constant space increment, we can rewrite Egn. 19 as a function of the Courant
number:
E=3CP+ 5 (19)

Now if we have two successive values of E_ for corresponding values of C, and if we

assume the coefficients & b do not change for the small change in C, then we can
compute the method order P according to:

Pa 'OQ(E.\,) - IOQ(E-Q) (20)
log(Cy) - log(C)

Equation 20 predicts a nominal value P = 1.8. This means that the overall order
of the method Is slightly less than second order. This is expected because a backwards
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Figure 4. Global Error

difference kemel, of first order accuracy, is applied at the node N. First order
inaccuracies generated at the last node tend to propagate into the solution domain,
reducing the overall solution order, Overall, a specified method order should be
considered approximate and will yield to the practical considerations of discretization and
the application of boundary conditions.

MELDING WITH STANDARD CLASS SOLVERS

The CNCD solution algorithm with LU ~matrix decomposition routine was
programmed in FORTRAN in a structured subroutine form. The inputs to the code are
the time, time step (Courant number), appropriate geometry and thermal physical
properties and boundary and initial conditions (coldplate and inlet fluid temperatures
respectively). The code can be executed independently to retum a temperature array
describing the local time and space values of the fluid temperature. This would be an
acceptable output as a utility routine if the code could be melded and referenced (called)
within a standard class solver such as SINDA. Of this melding or integration, there are
several important considerations that the user must be aware of:

249



o clashing of variable names between the convection code and the general
purpose code (SINDA)

o creating common blocks required by the convection routine and defining
global parameters

o. conversion of absolute and relative node locations to the temperature
values in array format to be referenced™

Without elaboration, these above problems with code melding are considered rudimentary
and can be managed with careful programming. However, the most important
consideration is that of time-step synchronization.

Standard solvers that analyze transient phenomenon, have internal discretization
structures, similar to those of the present study, but are typically removed from the user.
Removed in the sense that the local variables are not known, these discretization
structures select the appropriate time step during the simulation to ensure a specified
accuracy. Because the present algorithm is not an integral accessory to the standard
solver, the time and time-step of the standard solver must be sampled during a melded
simulation between solver and convection equation algorithm. Ideally, we desire to make
a single subroutine call to the convection code to update the boundary conditions.
However, as observed from the present study, the time-step used in the standard solver
is typically larger than that limited by the Courant criteria (Eqn. 16). Thus we cannot
make a single call to the convection routine to update the boundary conditions, rather, a
sub-integration must be performed.

This sub-integration is simply a moving time window. If the standard solver is
sampled to indicate a local time of 1 and time step if 0.1, and if the Courant criteria
requires a time step of 0.01 (say for C = 1), then we must perform 10 sub-integrations
of the convection equation to integrate from time t = 1 tot = 1.1. Upon completion of the
sub-integration, the user must whether decide to update the outer integration.” If the
outer integration step is large (the step internal to SINDA), then it may be necessary to
reenter the outer-integration upon completion of the sub-integration and iterate the
solution. If a relative small outer-loop time step is applied (this can be done by limiting
the time step selection mechanism in SINDA) then this iteration step can be eliminated.

CONCLUSIONS

A numerical study of the solution of the one-dimensional convection equation is

0 This is a SINDA convention specific to the SINDA code. The user names nodes with absolute
numbers, i.e. nodes 1 to 100, While, SINDA applies a relative numbering convention internally. To
reference the temperatures of those nodes that are boundary conditions, the user must convert the
numbering convention with a utility routine.

" An update or iteration is required because the convection solution forms a coupled boundary
conditions with the standard soiver.
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presented. A solution kernel has been presented that will yield satisfactory accuracy with
minimal computation complexities. The features of stability, accuracy and spurious
numerical phenomenon have been addressed in a general fashion to provide the user
with a cursory insight into problematic features of numerical convection equation
solutions. The key feature of time-step synchronization, as it applies to standard solver
code melding, has been discussed in considerable detail.
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